VANET Meets Deep Learning: the Effect of Data Dissemination to the Object Detection Performance

WANG Yuhao¹, Vlado Menkovski¹, Ivan Wang-Hei Ho², Mykola Pechenizkiy¹

¹Department of Mathematics and Computer Science, Eindhoven University of Technology ²Department of Electronic and Information Engineering, The Hong Kong Polytechnic University {y.wang9, v.menkovski, m.pechenizkiy}@tue.nl, ivanwh.ho@polyu.edu.hk

Research Background

- Research Background
 - Inter-Vehicle communication through Vehicular Ad-hoc Network (VANET)
 <Break the 'perception range limitation' through information sharing mechanism >

Research Background

• System framework

Scenario construction •

• Inter-vehicle communication

What is VANET

 (Vehicular Ad hoc Network) packets are exchanged between mobile nodes (Vehicles) traveling on constrained paths;

Scenario size	$274.441m \times 433.396m$							
Simulation duration	1200s							
Transmission power	16dBm - 28dBm							
Routing protocol	OLSR							
Physical mode	OFDMRate6MbpsBW10MHz							
80211mode	MAC:802.11p / 5.9GHz							
Packet size	200 bytes (Basic Safety Message) & 4,000,000 bytes (3D point cloud data)							
Transmission range	50m - 400m							
Porpagation loss model	ITUR1411LosPropagationLossModel							

• Inter-vehicle communication --- Packet Loss Ratio

- The dissemination of both original point cloud data (4,000,000 Bytes) as the infotainment service through VANET Service Channel (SCH);
- and the deep learning-based object detection results as the Basic Safety Message (BSM) (200 Bytes) through VANET Control Channel (CCH)

TABLE V: Packet Loss Ratio to the 3D point cloud data dissemination

Transmission power	16dBm	24dBm	28dBm
Transmission distance	100m	150m	200m
Packet Loss Ratio	90.03%	89.68%	89.63%

TABLE IV: Packet Loss Ratio to the 3D point cloud data dissemination

Packet Loss Ratio under vaiours transmission Power, different vehicle density and various transmission range																					
Тхр	16dBm		18dBm		20dBm			22dBm			24dBm			26dBm			28dBm				
density	S	м	С	S	м	С	s	м	C	S	м	С	S	м	С	S	М	C	S	м	C
distance	0		Ŭ	5		Č	0		Ŭ	0		č	0		Ŭ	0		Č	<u> </u>		Ŭ
50m	22.20	28.11	54.53	20.71	25.88	51.46	27.67	23.97	48.46	18.29	21.95	45.74	16.56	19.00	41.62	14.71	16.55	37.96	13.05	13.93	33.69
100m	46.27	58.08	80.57	45.24	56.78	79.26	50.05	55.67	77.98	43.58	54.59	76.74	42.38	52.28	75.05	41.10	51.34	73.46	39.96	49.81	71.60
150m	56.32	71.25	88.24	55.49	70.35	87.44	59.40	69.59	86.64	54.13	68.79	85.59	53.16	67.61	85.93	53.16	66.62	83.93	51.19	65.58	82.80
200m	63.48	78.86	91.96	62.79	78.19	91.41	60.06	77.64	90.88	61.65	77.05	90.37	60.84	76.18	89.67	60.84	75.46	89.01	59.19	74.68	88.24
250m	68.46	82.03	92.64	67.86	81.47	92.64	70.68	80.99	92.18	66.89	80.49	91.74	66.18	79.76	91.15	65.43	79.15	90.58	64.76	78.49	89.92
300m	70.64	83.45	93.62	70.08	82.93	93.19	72.70	82.49	92.77	69.16	82.03	92.36	68.51	81.35	92.39	67.81	80.79	91.28	67.19	80.18	90.67
350m	78.22	86.31	94.07	77.80	85.88	93.67	79.75	85.52	93.28	77.13	85.14	92.93	76.64	84.58	92.90	76.13	84.11	91.90	75.66	83.61	91.33
400m	78.22	86.31	94.07	77.80	85.88	93.67	79.75	85.52	93.28	77.13	85.14	92.93	76.64	84.58	92.90	76.13	84.11	91.90	75.66	83.61	91.33

• Point cloud object detection with deep learning

Fig. 3: Deep-learning-based object detection results with various packet loss degree. ((a, b, c) are qualitative results. We projected the point cloud detection results on RGB-images for better explanation.)

• Experiment Results (the effect of data loss to the deep learning-based object detection accuracy)

- The effect of various Packet Loss Ratio to the deep learning-based object detection accuracy;
- And we found that when data loss beyond 50% can lead to the rapid decline of the object detection accuracy;
- Based on our simulation, more than 50% data loss is a common scenario;

• Summary

Major contributions:

- We propose a system architecture that integrates vehicular communications and deep-learningbased object detection for analyzing the impact of communication loss on 3D object detection;
- We build a **semi-realistic traffic scenario** to evaluate the amount of packet loss due to fading and signal attenuation in dense city like downtown Hong Kong.
- The **potential issue under this framework**: the VANET packet loss to the deep learning-based object detection accuracy and vehicular perception range.

Future work:

- Reducing the packet loss ratio through the global adjustment of inter-vehicle communications could be a straightforward way.
- Meanwhile, the interpretability of the deep neural network is also important to avoid the opacity of the decision-making process.

