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Applications of Causal Inference

Healthcare:
Understanding the effect of treatments and interventions.
Example: Determining if a new drug reduces the risk of a disease.

Public Policy:
Evaluating the impact of policies and programs.
Example: Assessing the effectiveness of a new education policy on
student performance.

Business:
Identifying strategies that increase sales or customer retention.
Example: Measuring the effect of a marketing campaign on product
sales.
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Background on Causal Inference

Example: understand average treatment effect in health care
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Background: Plausible Causal Models

The causal effect can be identified using backdoor, front door
models
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Background: ATE Estimation

Example: ATE estimation with back-door model

Outcome Regression Model
Predicts the potential outcomes given covariates and treatment.
Estimates E [Y |A,X ].

Propensity Score Model
Estimates the probability of receiving the treatment given covariates.
Formally, e(X ) = P(A = 1|X ).

However:

Model misspecification is common ⇒ Incorrect estimation.

Slow convergence is common ⇒ Not
√
n-consistency
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Introduction to Doubly Robust Estimators

Recent advance: Doubly robust estimator
Doubly robust estimators combine inverse probability weighting (IPW)
and outcome regression to estimate causal effects;

Provides a general framework for estimating treatments effects using
ML methods;

Can use any (Preferably n1/4-consistent) ML estimator with this
approach

Enable us to construct valid confidence interval for our treatment effect
estimates;
Introduce a

√
n-consistent estimator

As n → ∞, the estimation error ψ̂−ψ∗ goes to zero at a rate of n−1/2;
We really like our estimators to be at least

√
n-consistent.
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Background: ATE Estimation

Apply doubly robust estimator!!
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Our Motivation

However, only have finite observations
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Our Motivation
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Background: Introduction to PAC Learning

Probably Approximately Correct (PAC) Learning is a framework
provides a theoretical foundation for understanding finite sample
complexity.

Accuracy (ϵ): the maximum allowed error.

Confidence (δ): the probability that the learned hypothesis is
approximately correct.

Sample complexity: the number of samples(n) required to achieve
(ϵ, δ) guarantees.

Goal: With high probability (”Probably”), the selected hypothesis will
have lower error (”Approximately Correct”)
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Our Problem
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Back-door Model

X

YA

Figure: Back-door adjustment

A be {0, 1}
X ,Y be any sets

X be a random variable on X
A(x), Â(x) be random variables on A for any x ∈ X
Y (a, x), Ŷ (a, x) be random variables on Y for any a ∈ A, x ∈ X
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Back-door adjustment: Estimator

The causal effect of A on Y denote as:

ψ∗ = E[Y | do(A = a∗)]

we define:

ϕ(a, x , y) = E
Ŷ (a∗,x)

Ŷ +
1[a = a∗]

Â(a; x)

(
y − E

Ŷ (a,x)
Ŷ

)

and

ψn =
1

n

n∑
i=1

ϕ
Â,Ŷ

(ai , xi , yi )
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Back-door adjustment: Goal

We revisit the well-known double/debiased machine learning (DML)
estimator for covariate adjustment in the BD setting [RRZ94; Che+17] and
analyze the mean-squared error of |ψn − ψ∗| in the finite sample setting.

Specifically, given finite samples, we want to bound MSE error in term of
the error in Â, Ŷ .
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Back-door adjustment: Result

Definition

Given two distributions P and Q, and an even integer p ≥ 2, we define the
χp divergence between them as:

χp(P∥Q) = Ex∼P

[(
1− Q(x)

P(x)

)p]
.

Novelty: The novelty of our result is that we express the mean-squared
error explicitly in terms of the errors in the estimates of the treatment and
outcome distributions. These errors are formulated in terms of
χ2-divergence.

PAC Style Guarantees for Doubly Robust Generalized Front-Door Estimator 15



Back-door adjustment: Result

Assumption

Assume for all x, the following condition holds:

E
Y (a∗,x)

Y 2 ≤ V , Pr[A(x) = a∗] ≥ µ, and Pr[Â(x) = a∗] ≥ µ.

Theorem

Under the above Assumption, for any ε > 0:

Pr[|ψn − ψ∗| > ε] <
1

nε2
OV ,µ

(
1 + E

x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
+ E

x
χ2
(
Â(x)||A(x)

))
+

1

ε2
OV ,µ

(
E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
· χ2

(
Â(x)∥A(x)

))
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Back-door adjustment: Result

What does this result mean?

Pr[|ψn − ψ∗| > ε]

<
1

nε2
OV ,µ

 1︸︷︷︸
Part1

+ E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
︸ ︷︷ ︸

Part2

+ E
x
χ2
(
Â(x)||A(x)

)
︸ ︷︷ ︸

Part3


+

1

ε2
OV ,µ

(
E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
· χ2

(
Â(x)∥A(x)

))
︸ ︷︷ ︸

Part4

Part 1: error incurred by the oracle estimator;

Part 2 & Part 3: Mismatch measured in χ2 between the model
estimates and the truth, for the outcome and propensity distributions;

Part 4: Mixed-bias or product rate phenomenon of the doubly robust
estimators [Che+20]
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Front-door Criterion - Model

A Z Y

X

U

Figure: Front-door adjustment

A be {0, 1}, and X ,Z,Y be any sets

X be a random variable on X
A(x), Â(x) be random variables on A for any x ∈ X
Z (a, x), Ẑ (z , x) be random variable on Z for any a ∈ A, x ∈ X
Y (z , a, x), Ŷ (z , a, x) be random variables on Y for any
a ∈ A, z ∈ Z, x ∈ X
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Front-door adjustment - Notations

we use ψ∗ denote the ground truth estimator

ϕY ,Z ,A to denote the oracle estimator

ϕ
Ŷ ,Ẑ ,Â

denote the empirical estimator.

ψ∗ = E[Y | do(A = a∗)]

ψn = 1
n

∑n
i=1 ϕ(ai , zi , yi , xi )

Our goal is to bound the MSE error of (ψn − ψ∗) in terms of the error in
Â, Ẑ , Ŷ .
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Front-door adjustment- Estimators

ψ∗ can be identified in terms of the observable distribution in a number of
ways, all equivalent to each other.

The first, ψ1, doesn’t require A | X :

ψ1 = E
A,X

[
E
Z

[
E
Y
[Y | A,Z ,X ] | a∗,X

]]
.

The second, ψ2, doesn’t require Z | A,X :

ψ2 = E
A,Z ,X

[
1[A = a∗]

Pr[A | X ]
· E
A′

[
E
Y
[Y | A′,Z ,X ] | X

]]
.

The third, ψ3, doesn’t require Y | A,Z ,X :

ψ3 = E
Y ,A,Z ,X

[
Y · Pr[Z | a∗,X ]

Pr[Z | A,X ]

]
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Front-door adjustment - DR estimator

Define the following quantity [Ful+20]:

ϕ(a, z , y , x)

= E
Ẑ(a∗,x)

[
E

Ŷ (a,Ẑ ,x)
Ŷ

]
+

1[a = a∗]

Â(a; x)
E

Â(x)

(
E

Ŷ (Â,z,x)
Ŷ − E

Ẑ(a,x)

[
E

Ŷ (Â,Ẑ ,x)
Ŷ

])

+

(
y − E

Ŷ (a,z,x)
Ŷ

)
· Ẑ(z ; a∗, x)

Ẑ(z ; a, x)

We can get a ”doubly-robustness” type property for ϕ: If any two of
Â, Ẑ , Ŷ are always correct, then EA,Z ,Y ,X ϕ = ψ∗.
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Front-door adjustment - Our Result

Assumption

Assume ∀a, z , x,

E
Y (a,z,x)

Y 2 ≤ V , Pr[Z (a, x) = z ] ≥ µZ · 1[Pr[Z (a∗, x) = z ] ̸= 0],

and Pr[A(x) = a∗] ≥ µA
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Front-door adjustment - Our results

Theorem

Pr[|ψn − ψ∗| > ε]

<
1

nε2
OV ,µZ ,µA

(
1 + E

a,z,x
χ2
(
Ŷ (a, z , x)∥Y (a, z , x)

)
+ E

x
χ2
(
Â(x)∥A(x)

)
+ E

x
χ2
(
Ẑ (a∗, x)∥Z (a∗, x)

)
+ E

a,x
χ2
(
Ẑ (a, x)∥Z (a, x)

))
+

1

ε2
OV ,µA,µZ

((√
Ea,z,xχ4(Ŷ (a, z , x)∥Y (a, z , x)) +

√
Exχ4(Â(x)∥A(x))

+

√
Exχ4(Ẑ (a∗, x)∥Z (a∗, x)) +

√
Ea,xχ4(Ẑ (a, x)∥Z (a, x))

)2)
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Front-door adjustment - Our Result

What does this result mean?

Pr[|ψn − ψ∗| > ε]

<
1

nε2
OV ,µZ ,µA

(
1︸︷︷︸

Oracle

+ E
a,z,x

χ2
(
Ŷ (a, z , x)∥Y (a, z , x)

)
︸ ︷︷ ︸

Outcome mismatch

+ E
x
χ2
(
Â(x)∥A(x)

)
︸ ︷︷ ︸
Propensity mismatch

+ E
x
χ2
(
Ẑ (a∗, x)∥Z (a∗, x)

)
︸ ︷︷ ︸

Propensity mismatch

+ E
a,x
χ2
(
Ẑ (a, x)∥Z (a, x)

)
︸ ︷︷ ︸

Propensity mismatch

)

+
1

ε2
OV ,µA,µZ

((√
Ea,z,xχ4(Ŷ (a, z , x)∥Y (a, z , x)) +

√
Exχ4(Â(x)∥A(x))

+

√
Exχ4(Ẑ (a∗, x)∥Z (a∗, x)) +

√
Ea,xχ4(Ẑ (a, x)∥Z (a, x))

)2)
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Conclusion

Summary

Our bound can be used to get guidance on how to construct the
estimators Ŷ , Ẑ , and Â;

Learning a distribution that minimizes a particular divergence is a
question in distribution learning

For example, the problem of learning a distribution minimizing the χ2

divergence was explicitly studied in [Kam+15].
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Future Work

Extend the current work to more general graph?

How to analyze the mixed-bias term in a ”simpler way”?

Real-data experiments.
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Thank You!

Q & A
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Backup

Backup
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Back-door adjustment

∆1 =
1

n

∑
i

(
E

Ŷ (a∗,xi )
Ŷ − E

Y (a∗,xi )
Y − 1[ai = a∗]

A(ai ; xi )

(
E

Ŷ (ai ,xi )
Ŷ − E

Y (ai ,xi )
Y

))

∆2 =
1

n

∑
i

1[ai = a∗]

(
1

Â(ai ; xi )
− 1

A(ai ; xi )

)
·
(
yi − E

Y (ai ,xi )
Y

)
∆3 = −1

n

∑
i

(
E

Ŷ (ai ,xi )
Ŷ − E

Y (ai ,xi )
Y

)(
1

Â(ai ; xi )
− 1

A(ai ; xi )

)

PAC Style Guarantees for Doubly Robust Generalized Front-Door Estimator 31



Back-door adjustment

We bound each of ∆1,∆2,∆3 by explicit computation.

E[∆2
1] ≤ OV ,µ

(
1

n
· E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

))
E[∆2

2] ≤ OV ,µ

(
1

n
· E
x
χ2
(
Â(x)||A(x)

))
E[∆2

3] ≤ OV ,µ

(
E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
· E
x
χ2
(
Â(x)∥A(x)

))
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Front-door adjustment
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