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Introduction

Goal: Minimum number of samples required to learn the graph from data.

Examples

Figure 1:(a) and (b) Distribution learning and (c) Structure learning

Questions

1. (Non-realizable setting) P might not representable by any tree), how many samples are
required to learn a tree-structured distribution Q?

2. (Realizable setting) P itself is tree-structured, how many samples are required to learn a
tree-structured distribution Q7?

3. (Faithful setting) P is faithful to some tree T', how many samples are required to learn T'
up to Markov equivalence?

Bayesian networks and Tree-Faithfulness

Distribution learning: For a distribution P and a directed tree T, let

Pr = arg min Dx1(P||Q),

T-structured distribution@
where Dk {-||-} denotes the KL-divergence.

Definition 1 : [Tree-faithfulness] We say distribution P is tree-faithful to a polytree T if

1. For any two nodes connected X; — X}, we have X A X, | X, forall ¢ € VU{0}\ {k,j};
2. For any v-structure X, — X, < X, we have X L X;|X,.

Definition 2 : [c-strong tree-faithfulness] We say that P is c-strong tree-faithful to a polytree T
if

1. For any two nodes connected X; — X, we have p(Xj, X;| X;) > cfor e VU{0}\ {k,j};
2. For any v-structure X — X, < X, we have p(Xy, X; | X¢) > c.

Optimal Estimation of Gaussian (Poly)trees
Yuhao Wang, Ming Gao, Wai Ming Tal, Bryon Aragam, Arnab Bhattacharyya

National University of Singapore, University of Chicago, Nanyang Technological University

Our Contribution

Non-realizable Setting

Without making additional assumptions on P, we show that
~ rd?
n= @(—2) (1)
g
samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured
distribution that is e-close to the closest tree-structured distribution for P.

Realizable Setting \WWhen P itself is Markov to a tree T (i.e. it is tree-structured), then
~rd
n = @(—) 2)

€

samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured
distribution that is e-close to P itself.

Faithful Polytrees Assuming that P is faithful to some polytree T', we show that the optimal
sample complexity of learning T', the CPDAG of T}, is

n:@(logzd) 3)

C

where ¢ is the strong faithfulness parameter.

Learning Tree-Structured Gaussians

Theorem 1 : [Non-realizable settjng] let P be a Gaussian distribution. Given n 1.i.d. samples
from P, forany e, >0,ifn 2 log then T returned by Algorithm 1 satisfies

Dt (Pl P=) < min Dt (Pl P
kL(P] T)_il’glelgl_ kL(P||Pr) + e,

with probability at least 1 — 4. Besides, if n = o(d?/e*), no algorithm returns a directed tree T

such that
D1 (Pl P=) < min Dx1 (Pl P
kL(P] T)_jfl’lel;l, kL(P||Pr) + ¢
with probability at least 2/3.

Theorem 2 : [Realizable setting] Let T™ be a directed tree and Pp- beAa T*-structured Gaussian.
Given n i.i.d. samples from Pr., for any e,8 > 0, if n > %log 4, then T  returned by Algorithm 1
satisfies

DKL(PT*

Pr) <e,

with probability at least 1 —¢. Besides, suppose P is an unknown Gaussian distribution such that
P = Pr+. Given n i.i.d. samples drawn from P. For any small ¢ > 0, if n = o(d/¢e), no algorithm
returns a directed tree T such that

with probability at least 2/3.

Algorithm 1 Modified Chow-Liu algorithm

1: Input: n i.i.d. samples (X <'),...,XC(ZZ'))
2: Foreach]—l o d:

- 0 A Zz 1( J >
3. For each palr( k),1<j<k<d:

pﬂf 2 Zz 1 j()X]E:)
4. For each palr(], k),1<j<k<d:
2/\2
= I(X;: X)) —1log (1 — a%kg) which is same as 1 log(1 + J’”)

G + the weighted complete undirected graph on [d] whose edge weight for (7, k) is IA(Xj; Xi)
S < the maximum weighted spanning tree of G

T « any directed tree with skeleton to be §

return A directed tree T
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Optimal Faithful Tree Learning

Algorithm 2 PC-Tree algorithm

1. Input: n i.i.d. samples (Xl(i), . ,Xc(ﬁ)

2. Let B = 0.

3. Foreach pair (j,k),0<j <k <d:
= Forall £ e [dU{0}\ {J,k}:

= Test Hy: X; 1L X3 | Xy vs. Hy : X; L X | Xy, store the results.

« If all tests reject, then E < E U {j — k}.
= Else (if some test accepts), let S(j,k) ={¢ € [d] U{0} \ {j, k}: X, 1L X | Xo}.
= Return: T' = ([d], E)), separation set S

Theorem 3 : [Structure learning] For any T € T, assuming P is c-strong tree-faithful to T,
applying Algorithm 2 with sample correlation for Cl testing, if the sample size

1
n = g<logd+log(1/5)> :

then Pr(T = sk(T")) > 1 — 8, and Pr(Orient(T, S) =T) > 1 — 6.
Besides, assuming ¢* < 1/5, d > 4, if the sample size is bounded as
1—20 logd

n < g ><627

then for any estimator T for T,

log 2

inf Sup Pr(T #£T) > 6 — :
T TeT logd
P is c-strong
tree-faithful to T’

Experiment results

= PC-Tree algorithm does perform the best, especially on PRR over the baselines.

= We have not analyzed the performance of Chow-Liu under the goal of structure learning,
and we conjecture a similar sample complexity is shared with PC-Tree.
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Figure 2:Performance comparison for PC-Tree, Chow-Liu, PC and GES algorithm evaluated on SHD and PRR. The
red, blue, green, purple lines are for PC-Tree, Chow-Liu, PC and GES respectively.

Conclusion and Future Work

We treat both problems in a unified setting, allowing for an explicit comparison of these problem:

1. Inregime ¢ < dc?, distribution learning is harder (in terms of sample size needed);
2. Inregime ¢? < e < dc?, distribution learning does not automatically imply structure learning;

3. Extending these results beyond the Gaussians we consider here (as well as finite alphabets

as in previous work) is a promising direction for future research.



