

National University of Singapore, University of Chicago, Nanyang Technological University

Introduction

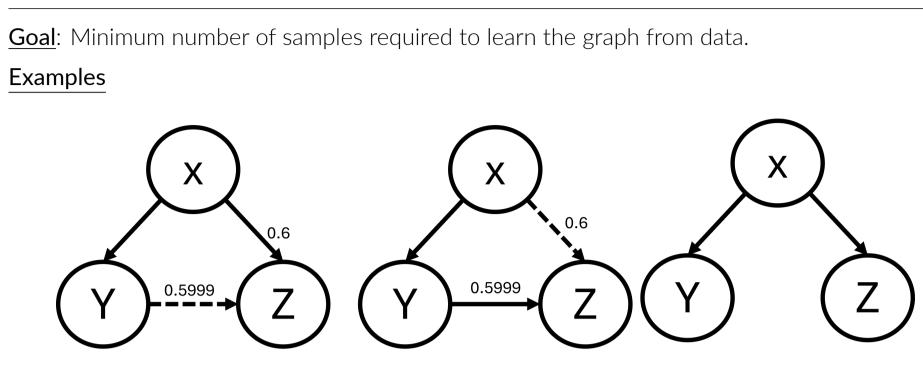


Figure 1:(a) and (b) Distribution learning and (c) Structure learning

Questions

- (Non-realizable setting) P might not representable by any tree), how many samples are required to learn a tree-structured distribution Q?
- (Realizable setting) *P* itself is tree-structured, how many samples are required to learn a tree-structured distribution Q?
- (Faithful setting) P is faithful to some tree T, how many samples are required to learn Tup to Markov equivalence?

Bayesian networks and Tree-Faithfulness

Distribution learning: For a distribution P and a directed tree T, let

 $D_{\mathrm{KL}}(P||Q),$ $P_T :=$ T-structured distributionQ

where $D_{\text{KL}}\{\cdot || \cdot\}$ denotes the KL-divergence.

Definition 1 : [Tree-faithfulness] We say distribution *P* is tree-faithful to a polytree *T* if

1. For any two nodes connected $X_i - X_k$, we have $X_k \not\perp X_j \mid X_\ell$ for all $\ell \in V \cup \{\emptyset\} \setminus \{k, j\}$; 2. For any v-structure $X_k \to X_\ell \leftarrow X_j$, we have $X_k \not\perp X_j \mid X_\ell$.

Definition 2 : [c-strong tree-faithfulness] We say that P is c-strong tree-faithful to a polytree T

- 1. For any two nodes connected $X_j X_k$, we have $\rho(X_k, X_j | X_\ell) \ge c$ for $\ell \in V \cup \{\emptyset\} \setminus \{k, j\}$;
- 2. For any v-structure $X_k \to X_\ell \leftarrow X_j$, we have $\rho(X_k, X_j \mid X_\ell) \ge c$.

samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured distribution that is ε -close to the closest tree-structured distribution for P.

where c is the strong faithfulness parameter.

such that

with probability at least 2/3.

satisfies

with probability at least $1-\delta$. Besides, suppose P is an unknown Gaussian distribution such that $P = P_{T^*}$. Given *n* i.i.d. samples drawn from *P*. For any small $\varepsilon > 0$, if $n = o(d/\varepsilon)$, no algorithm returns a directed tree \widehat{T} such that

1:	Input
2:	For e
	• $\widehat{\sigma}_j^2$
3:	Fore
	• $\widehat{ ho}_{jk}$
4:	For e
	• <i>Î</i> (2
5:	$G \leftarrow$
,	$\hat{\alpha}$

Optimal Estimation of Gaussian (Poly)trees

Yuhao Wang, Ming Gao, Wai Ming Tai, Bryon Aragam, Arnab Bhattacharyya

Non-realizable Setting

Without making additional assumptions on P, we show that

$$n = \widetilde{\Theta} \left(\frac{d^2}{\varepsilon^2} \right) \tag{1}$$

Realizable Setting When P itself is Markov to a tree T (i.e. it is *tree-structured*), then

$$n = \widetilde{\Theta}\left(\frac{d}{\varepsilon}\right) \tag{2}$$

samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured distribution that is ε -close to P itself.

Faithful Polytrees Assuming that *P* is faithful to some *polytree T*, we show that the optimal sample complexity of learning \overline{T} , the CPDAG of T, is

$$n = \Theta\left(\frac{\log d}{c^2}\right),\tag{3}$$

Learning Tree-Structured Gaussians

Theorem 1: [Non-realizable setting] Let P be a Gaussian distribution. Given n i.i.d. samples from P, for any $\varepsilon, \delta > 0$, if $n \gtrsim \frac{d^2}{\varepsilon^2} \log \frac{d}{\delta}$, then \widehat{T} returned by Algorithm 1 satisfies

$$D_{\mathrm{KL}}(P||P_{\widehat{T}}) \leq \min_{T \in \mathcal{T}} D_{\mathrm{KL}}(P||P_T) + \varepsilon,$$

with probability at least $1 - \delta$. Besides, if $n = o(d^2/\varepsilon^2)$, no algorithm returns a directed tree \widehat{T}

$$D_{\mathrm{KL}}(P||P_{\widehat{T}}) \leq \min_{T \in \mathcal{T}} D_{\mathrm{KL}}(P||P_T) + \varepsilon$$

Theorem 2 : [Realizable setting] Let T^* be a directed tree and P_{T^*} be a T^* -structured Gaussian. Given n i.i.d. samples from P_{T^*} , for any $\varepsilon, \delta > 0$, if $n \gtrsim \frac{d}{\varepsilon} \log \frac{d}{\delta}$, then \widehat{T} returned by Algorithm 1.

 $D_{\mathrm{KL}}(P_{T^*}||P_{\widehat{T}}) \leq \varepsilon,$

 $D_{\mathrm{KL}}(P||P_{\widehat{T}}) \leq \varepsilon$

with probability at least 2/3.

Algorithm 1 Modified Chow-Liu algorithm **it**: *n* i.i.d. samples $(X_1^{(i)}, \ldots, X_d^{(i)})$ each j = 1, ..., d: $\leftarrow \frac{1}{n} \sum_{i=1}^{n} (X_j^{(i)})^2$ each pair $(j, k), 1 \leq j < k \leq d$: $\leftarrow \frac{1}{n} \sum_{i=1}^{n} X_j^{(i)} X_k^{(i)}$ each pair $(j, k), 1 \leq j < k \leq d$: $(X_j; X_k) \leftarrow -\frac{1}{2} \log \left(1 - \frac{\widehat{\rho}_{jk}^2}{\widehat{\sigma}_i^2 \widehat{\sigma}_k^2}\right)$ which is same as $\frac{1}{2} \log \left(1 + \frac{\beta_{jk}^2 \widehat{\sigma}_j^2}{\widehat{\sigma}_{k|j}}\right)$ - the weighted complete undirected graph on [d] whose edge weight for (j,k) is $\widehat{I}(X_j;X_k)$ 6: $\widehat{S} \leftarrow$ the maximum weighted spanning tree of G 7: $\widehat{T} \leftarrow$ any directed tree with skeleton to be \widehat{S}

8: **return** A directed tree \widehat{T}



- 1: Input: n i.i.d. samples $(X_1^{(i)}, \ldots, X_d^{(i)})$
- 2: Let $\widehat{E} = \emptyset$.
- 3: For each pair (j, k), $0 \le j < k \le d$:
- For all $\ell \in [d] \cup \{\emptyset\} \setminus \{j, k\}$:
- - **Return**: $\widehat{T} = ([d], \widehat{E})$, separation set S

then for any estimator \widehat{T} for \overline{T} ,

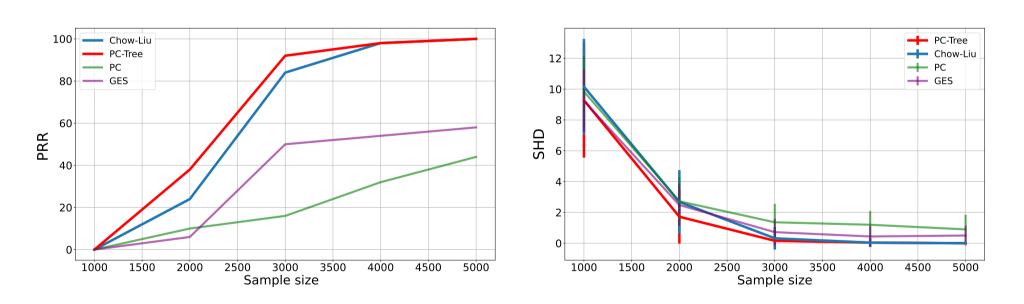


Figure 2:Performance comparison for PC-Tree, Chow-Liu, PC and GES algorithm evaluated on SHD and PRR. The red, blue, green, purple lines are for PC-Tree, Chow-Liu, PC and GES respectively.

We treat both problems in a unified setting, allowing for an explicit comparison of these problem:

Optimal Faithful Tree Learning

• Test $H_0: X_j \perp \!\!\!\perp X_k \mid X_\ell$ vs. $H_1: X_j \not\perp X_k \mid X_\ell$, store the results. • If all tests reject, then $\widehat{E} \leftarrow \widehat{E} \cup \{j - k\}$. • Else (if some test accepts), let $S(j,k) = \{\ell \in [d] \cup \{\emptyset\} \setminus \{j,k\} : X_j \perp X_k \mid X_\ell\}.$

Theorem 3: [Structure learning] For any $T \in \tilde{\mathcal{T}}$, assuming P is c-strong tree-faithful to T, applying Algorithm 2 with sample correlation for CI testing, if the sample size

$$n \gtrsim \frac{1}{c^2} \left(\log d + \log(1/\delta) \right),$$

then $\Pr(\widehat{T} = \operatorname{sk}(T)) \ge 1 - \delta$, and $\Pr(\operatorname{Orient}(\widehat{T}, S) = \overline{T}) \ge 1 - \delta$.

Besides, assuming $c^2 \leq 1/5$, $d \geq 4$, if the sample size is bounded as

$$n \le \frac{1 - 2\delta}{8} \times \frac{\log d}{c^2},$$

$$\inf_{\widehat{T}} \sup_{\substack{T \in \widetilde{\mathcal{T}} \\ P \text{ is } c \text{-strong}}} \Pr(\widehat{T} \neq \overline{T}) \ge \delta - \frac{\log 2}{\log d}$$

tree-faithful to T

Experiment results

• PC-Tree algorithm does perform the best, especially on PRR over the baselines. • We have not analyzed the performance of Chow-Liu under the goal of structure learning, and we conjecture a similar sample complexity is shared with PC-Tree.

Conclusion and Future Work

1. In regime $\varepsilon \ll dc^2$, distribution learning is harder (in terms of sample size needed);

2. In regime $c^2 \ll \varepsilon \ll dc^2$, distribution learning does not automatically imply structure learning;

3. Extending these results beyond the Gaussians we consider here (as well as finite alphabets as in previous work) is a promising direction for future research.