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Introduction

Goal: Minimum number of samples required to learn the graph from data.

Examples

Figure 1:(a) and (b) Distribution learning and (c) Structure learning

Questions

1. (Non-realizable setting) P might not representable by any tree), how many samples are

required to learn a tree-structured distribution Q?

2. (Realizable setting)P itself is tree-structured, how many samples are required to learn a

tree-structured distribution Q?

3. (Faithful setting) P is faithful to some tree T , how many samples are required to learn T
up to Markov equivalence?

Bayesian networks and Tree-Faithfulness

Distribution learning: For a distribution P and a directed tree T , let

PT := arg min
T -structured distributionQ

DKL(P ||Q),

where DKL{·||·} denotes the KL-divergence.

Definition 1 : [Tree-faithfulness]We say distribution P is tree-faithful to a polytree T if

1. For any two nodes connected Xj −Xk, we have Xk 6⊥⊥ Xj |X` for all ` ∈ V ∪ {∅} \ {k, j};
2. For any v-structure Xk → X` ← Xj , we have Xk 6⊥⊥ Xj |X`.

Definition 2 : [c-strong tree-faithfulness]We say that P is c-strong tree-faithful to a polytree T
if

1. For any two nodes connected Xj −Xk, we have ρ(Xk, Xj |X`) ≥ c for ` ∈ V ∪ {∅} \ {k, j};
2. For any v-structure Xk → X` ← Xj , we have ρ(Xk, Xj |X`) ≥ c.

Our Contribution

Non-realizable Setting

Without making additional assumptions on P , we show that

n = Θ̃
(d2

ε2

)
(1)

samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured

distribution that is ε-close to the closest tree-structured distribution for P .

Realizable SettingWhen P itself is Markov to a tree T (i.e. it is tree-structured), then

n = Θ̃
(d

ε

)
(2)

samples are necessary and sufficient to learn (with probability at least 2/3) a tree-structured

distribution that is ε-close to P itself.

Faithful Polytrees Assuming that P is faithful to some polytree T , we show that the optimal

sample complexity of learning T , the CPDAG of T , is

n = Θ
(

log d

c2

)
, (3)

where c is the strong faithfulness parameter.

Learning Tree-Structured Gaussians

Theorem 1 : [Non-realizable setting] Let P be a Gaussian distribution. Given n i.i.d. samples

from P , for any ε, δ > 0, if n & d2

ε2 log d
δ , then T̂ returned by Algorithm 1 satisfies

DKL(P ||PT̂ ) ≤ min
T∈T

DKL(P ||PT ) + ε,

with probability at least 1 − δ. Besides, if n = o(d2/ε2), no algorithm returns a directed tree T̂
such that

DKL(P ||PT̂ ) ≤ min
T∈T

DKL(P ||PT ) + ε

with probability at least 2/3.
Theorem 2 : [Realizable setting] Let T ∗ be a directed tree and PT ∗ be a T ∗-structured Gaussian.

Given n i.i.d. samples from PT ∗, for any ε, δ > 0, if n & d
ε log d

δ , then T̂ returned by Algorithm 1

satisfies

DKL(PT ∗||PT̂ ) ≤ ε,

with probability at least 1−δ. Besides, suppose P is an unknown Gaussian distribution such that

P = PT ∗. Given n i.i.d. samples drawn from P . For any small ε > 0, if n = o(d/ε), no algorithm

returns a directed tree T̂ such that

DKL(P ||PT̂ ) ≤ ε

with probability at least 2/3.

Algorithm 1 Modified Chow-Liu algorithm

1: Input: n i.i.d. samples (X(i)
1 , . . . , X

(i)
d )

2: For each j = 1, . . . , d:

σ̂2
j ← 1

n

∑n
i=1(X

(i)
j )2

3: For each pair (j, k), 1 ≤ j < k ≤ d:

ρ̂jk ← 1
n

∑n
i=1 X

(i)
j X

(i)
k

4: For each pair (j, k), 1 ≤ j < k ≤ d:

Î(Xj; Xk)← −1
2 log

(
1− ρ̂2

jk

σ̂2
j σ̂2

k

)
which is same as 1

2 log(1 + β̂2
jkσ̂2

j

σ̂k|j
)

5: G← theweighted complete undirected graph on [d]whose edgeweight for (j, k) is Î(Xj; Xk)
6: Ŝ ← the maximum weighted spanning tree of G
7: T̂ ← any directed tree with skeleton to be Ŝ
8: return A directed tree T̂

Optimal Faithful Tree Learning

Algorithm 2 PC-Tree algorithm

1: Input: n i.i.d. samples (X(i)
1 , . . . , X

(i)
d )

2: Let Ê = ∅.
3: For each pair (j, k), 0 ≤ j < k ≤ d:

For all ` ∈ [d] ∪ {∅} \ {j, k}:
Test H0 : Xj ⊥⊥ Xk |X` vs. H1 : Xj 6⊥⊥ Xk |X`, store the results.

If all tests reject, then Ê ← Ê ∪ {j − k}.
Else (if some test accepts), let S(j, k) = {` ∈ [d] ∪ {∅} \ {j, k} : Xj ⊥⊥ Xk |X`}.
Return: T̂ = ([d], Ê), separation set S

Theorem 3 : [Structure learning] For any T ∈ T̃ , assuming P is c-strong tree-faithful to T ,
applying Algorithm 2 with sample correlation for CI testing, if the sample size

n &
1
c2

(
log d + log(1/δ)

)
,

then Pr(T̂ = sk(T )) ≥ 1− δ, and Pr(Orient(T̂ , S) = T ) ≥ 1− δ.

Besides, assuming c2 ≤ 1/5, d ≥ 4, if the sample size is bounded as

n ≤ 1− 2δ

8
× log d

c2 ,

then for any estimator T̂ for T ,

inf
T̂

sup
T∈T̃

P is c-strong
tree-faithful to T

Pr(T̂ 6= T ) ≥ δ − log 2
log d

.

Experiment results

PC-Tree algorithm does perform the best, especially on PRR over the baselines.

We have not analyzed the performance of Chow-Liu under the goal of structure learning,

and we conjecture a similar sample complexity is shared with PC-Tree.
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Figure 2:Performance comparison for PC-Tree, Chow-Liu, PC and GES algorithm evaluated on SHD and PRR. The

red, blue, green, purple lines are for PC-Tree, Chow-Liu, PC and GES respectively.

Conclusion and FutureWork

We treat both problems in a unified setting, allowing for an explicit comparison of these problem:

1. In regime ε� dc2, distribution learning is harder (in terms of sample size needed);

2. In regime c2 � ε� dc2, distribution learning does not automatically imply structure learning;

3. Extending these results beyond the Gaussians we consider here (as well as finite alphabets

as in previous work) is a promising direction for future research.


