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Background

Bayesian Network

Figure: Bayesian Network

Eg. P(X1,X2,X3) = P(X1)P(X2|X1)p(X3|X1,X2)

1 The DAG G = (V ,E)

2 V = {X1, . . . ,Xn}
3 (Xj ,Xi) ∈ E whenever Xj → Xi

4 For variable Xi with parent indices
πi ⊆ [n]

5 By Bayesian rule:
P(X1, . . . ,Xn) =

∏n
i=1 PrP(Xi | πi)
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Background

Structural Equation Models with Gaussian Noise

X1 = η1,
X2 = aX1 + η2,
X3 = bX2 + cX3 + η3
ηi ∼ N (0, σ2

i )

1 M̂ empirical covariance matrix of X1, . . . ,Xp with Cholesky
decomposition M̂ = L̂L̂>

2 (X1, . . . ,Xp) ∼ N(0,M) is distributed as a multivariate Gaussian;
3 Structural equation model: Xi = ηi +

∑
j∈πi

ai←jXj , ηi ∼ N(0, σ2
i ).
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Background

Objective

Goal: Parameter learning on a given graph structure

Ground truth with
parameters
[a, b, c] and [σ1, σ2, σ3]

Draw sample (possibly
contaminated)

+ Given graph structure

Objective:

Recover [a, b, c]︸ ︷︷ ︸
Parameter estimation

[σ1, σ2, σ3]︸ ︷︷ ︸
Variance recovery

inducingP̂ such that dTV (P , P̂) ≤ ε︸ ︷︷ ︸
Distance measure

;
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High-level approach

The distance measure

Total variational (TV) distance:
dTV(P,Q) = supA∈Rn |P(A)−Q(A)| = 1

2
∫
Rn |P(x)−Q(x)| dx .

Kullback–Leibler (KL) divergence:
dKL(P,Q) =

∫
A∈Rn P(A) log

(
P(A)
Q(A)

)
dA.

Fact (Pinsker’s inequality)
For distributions P and Q, dTV(P,Q) ≤

√
dKL(P,Q)/2.

If s(ε) samples are needed to ensure dKL(P,Q) ≤ ε

=⇒ s(ε2) samples are needed to ensure dTV(P,Q) ≤ ε.
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High-level approach

Decomposing KL divergence:

Decompose KL divergence into n terms:

dKL(P,Q) =
n∑

i=1
dCP(α

∗
i , α̂i)

=⇒ Estimate parameters for each variable independently

dKL(P,Q) =
n∑

i=1
dCP(α

∗
i , α̂i) =

n∑
i=1

ln

(
σ̂i
σi

)
+

σ2
i − σ̂2

i
2σ̂2

i
+

∆>i Mi∆i
2σ̂2

i

α∗i = (Ai , σi): coefficients and
variance associated with Xi

α̂i = (Âi , σ̂i): estimates for α∗i

Mi : covariance matrix
associated with Xi

∆i = Âi − Ai
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High-level approach

Two-phased recovery approach

First phase: Estimate the coefficients Â1, . . . , Ân of the Bayesian
network

Second phase: Recover variances σ̂2
y using empirical variances

conditioned on our recovered coefficients (y refers to any arbitrary
variable index).

We are running the same algorithm for each node.
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High-level approach

Coefficient estimators overview

There’s no explicit sample complexity bound known for
Node-wise least square

Our contributions:

Algorithm Remarks
LeastSquares Õ(nd/ε2) samples within TV distance ε.
BatchAvgLeastSquares Distributed-friendly generalization.
CauchyEstTree Õ(nd/ε2) samples within TV distance ε.
CauchyEst∗ Robust when data are contaminated

All algorithms run in poly(n, d , log(δ−1)) time with success
probability at least 1 − δ.

∗ No theoretical guarantees but empirically robust against contaminated samples
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What’s new: coefficients recovery Estimators based on least squares

Vanilla least square

LeastSquares: using linear least squares. X (1)
1 . . . X (1)

p
... . . . ...

X (m1)
1 . . . X (m1)

p


X∈Rm1×p

·

a1
...

ap


A∈Rp

=

 Y (1)

...
Y (m1)


B∈Rm1

Problem: XÂ = B
Solution:

Â = (X>X)−1X>B

No known analysis for the explicit sample complexity bound
Conclusion:: O(ndavgε

−2 · log(nδ−1)) samples within TV distance ε.
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What’s new: coefficients recovery Estimators based on least squares

Batch average least squares

BatchAvgLeastSquares: any interpolation between “batch size” and
“number of batches” as long as the total number of samples used is
sufficiently large.

batch 1

X (1)
1 . . . X (1)

p
... . . . ...

X (k)
1 . . . X (k)

p

 ·

a1
...

ap

 =

Y (1)

...
Y (k)


… … …

batch b

X ((b−1)k+1)
1 . . . X ((b−1)k+1))

p
... . . . ...

X (m1)
1 . . . X (m1)

p


X∈Rk×p

·

a1
...

ap


A∈Rp

=

Y (((b−1)k+1))

...
Y (m1)


b∈Rk
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What’s new: coefficients recovery Estimator based on Cauchy random variables

CauchyEstTree

Notation: M̂ empirical covariance matrix of X1, . . . ,Xp with Cholesky
decomposition M̂ = L̂L̂>

dKL(P,Q) =
n∑

i=1
dCP(α

∗
i , α̂i) =

n∑
i=1

ln

(
σ̂i
σi

)
+

σ2
i − σ̂2

i
2σ̂2

i
+

∆>i Mi∆i
2σ̂2

i︸ ︷︷ ︸
=⇒

∣∣∣∆>M∆
∣∣∣ = ∣∣∣∆>LL>∆

∣∣∣ = ∥∥∥L>∆
∥∥∥2

CauchyEstTree
Consider a batch estimate Ã and define ∆ = Ã − A. If the Bayesian
network is a polytree, then ∆i = (Ã − A)i ∼ σy

σi
· Cauchy(0, 1) for all

i ∈ [n].

The study of Cauchy random variables
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What’s new: coefficients recovery Estimator based on Cauchy random variables

CauchyEstTree: Algorithm

Compute Ã = [ây←1, . . . , ây←p ]
> as any solution to XÃ =

[
Y (1), . . . ,Y (p)]>

MEDi as the median of (L̂>Ã(1))i , . . . , (L̂>Ã(bm/pc))i

Â> = (L̂>)−1 [MED1, . . . , MEDn]
>
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What’s new: coefficients recovery Estimator based on Cauchy random variables

Cauchy-based estimators

Q: Why take median instead of mean?

A: The variance of a Cauchy variable is unbounded

Conclusion: O(ndavgdε−1 · log(nδ−1)) samples within TV distance ε.

Generalization to random DAGs =⇒ CauchyEst estimator.

Limitation: No guarantees when DAG is not a tree.
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Hardness results

Hardness results

Learning Gaussian product distributions
Given samples from a n-fold Gaussian product distribution P , learning a P̂
such that in dTV(P , P̂) = O(ε) with success probability 2/3 needs
Ω(nε−2) samples in general.

Learning Gaussian Bayesian networks
For any 0 < ε < 1 and n, d such that d ≤ n/2, there exists a DAG G over
[n] of in-degree d such that learning a Gaussian Bayesian network P̂ on G
such that dTV(P , P̂) ≤ ε with success probability 2/3 needs Ω(ndε−2)
samples in general.
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Experiments

Experiment results

Algorithms evaluated on ER graph with
d = 5 on uncontaminated data

Algorithms evaluated on ER graph with
d = 5 on contaminated data
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