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Bayesian Network

Background
@ 1 The DAG G = (V, E)

a ¢ 2 V={Xy,..., Xy}
3 (Xj, X;) € E whenever X; — X;

4 For variable X; with parent indices
i g [n]

5 By Bayesian rule:
'P(Xl, e ,Xn) = H;’:l PFP(X,' | 7T,')

Figure: Bayesian Network

Eg. P(X1, X2, X3) = P(X1)P(X2|X1)p(X3| X1, X2)
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Structural Equation Models with Gaussian Noise

Background

X1 =m,
X2 - aXl + 2,

X3 = bXy + cX3+ 13
@ @ ni ~ N(0,07)

1M empirical covariance matrix of Xy, ..., X, with Cholesky
decomposition M = LLT

5]
[

2 (X1,...,Xp) ~ N(0, M) is distributed as a multivariate Gaussian;
3 Structural equation model: X; =n; + Zjem ajjXj, ni ~ N(0, a,-z).

u]
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Objective

Background
Goal: Parameter learning on a given graph structure
X1 Xz X3 @
Xfl) Xz(l) X?El)
Ground truth with Draw sample (possibly

parameters contaminated)

[a, b, c] and [o1, 02, 03]
Objective:

Recover |a, b, ¢]

+ Given graph structure

~~

Parameter estimation Variance recovery

[01,02,03] inducingP such that drv(P, I?’) <e€

[m]

Distance measure
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2 High-level approach
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The distance measure

High-level approach

= Total variational (TV) distance:

drv(P, Q) = supacgr [P(A) = QA) = 5 frr [P(x) = Q(x)| dx.
m Kullback-Leibler (KL) divergence:

AkL(P: Q) = [nenn P(A)log (54} dA

Fact (Pinsker's inequality)

For distributions P and Q, drv(P, Q) < /dkL(P, Q)/2.

If s(¢) samples are needed to ensure dkp,(P, Q) < e
= 5(=?) samples are needed to ensure dv(P, Q) < e.
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Decomposing KL divergence:
Decompose KL divergence into n terms:
dxL(P, Q) = ZdCP a7, @)

—> Estimate parameters for each variable independently

~2
i

n o~

gj — 0
dkr(P, Q) = chp(a,,a, = ;In <0_,> ’2
(Aj, 0i): coefficients and
variance associated with X
ma = (A

ATMA

=2

207
i

= (A}, 7}): estimates for «

m M;: covariance matrix
associated with X

A=A —A

1
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Two-phased recovery approach

High-level approach

m First phase: Estimate the coefficients 21, . ,2\,, of the Bayesian
network

m Second phase: Recover variances 6; using empirical variances

conditioned on our recovered coefficients (y refers to any arbitrary
variable index).

m We are running the same algorithm for each node.

o =] = a
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Coefficient estimators overview

High-level approach

m There’s no explicit sample complexity bound known for
Node-wise least square

Our contributions:

Algorithm Remarks
LeastSquares O(nd/e?) samples within TV distance ¢.
BatchAvgLeastSquares | Distributed-friendly generalization.
CauchyEstTree O(nd/e?) samples within TV distance ¢.
CauchyEst* Robust when data are contaminated

m All algorithms run in poly(n, d,log(6~1)) time with success
probability at least 1 — 4.

+ No theoretical guarantees but empirically robust against contaminated samples

o =1 =
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3 What's new: coefficients recovery

Estimators based on least squares

Estimator based on Cauchy random variables

[m]
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Vanilla least square

LeastSquares: using linear least squares.

1 1 ~
Xl( ) X,g ) a YO\ problem: XA = B
: : = : So/l\ution:
Xfml) o ngml) ap Y(ml) A= (XTX)*]-XTB
XERMLXP AcRP BeR™

No known analysis for the explicit sample complexity bound

Conclusion:: O(ndayge=2 - log(nd—t)) samples within TV distance e.
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Batch average least squares
BatchAvgLeastSquares: any interpolation between “batch size” and
“number of batches” as long as the total number of samples used is

sufficiently large.
(1)
X3 .
batch 1 :

X\ /a y®
X x) \a y(®)
X((b=Dk) X{(b=1)k41) a
batch b .
Xl(ml) X(ml)
XeRkxp

y (b=1)k+1))
P

Y(-ml)

beRkK
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CauchyEstTree

What's new: coefficients recovery Estimator based on Cauchy random variables

Notation: M empirical covariance matrix of X, ..., X, with Cholesky
decomposition M = LLT

n =~ 2 _ =2 T
oj of —or A MiA;
dKL P, Q E dcp(a,,a, E In <UI> + 1282 L4 /2821 i
i=1 ! i J

— ‘ATI\/IA) — ‘ATLLTA) - HLTAH2
CauchyEstTree

Consider a batch estimate A and define A = A — A. If the Bayesian

network is a polytree, then A; = (A — A); ~ C;—f - Cauchy(0,1) for all
i€ [n].

The study of Cauchy random variables

=] =
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CauchyEstTree: Algorithm

What's new: coefficients recovery Estimator based on Cauchy random variables

xM

X,(,l) ai
Xl(P) ngp) ap Y(m1)

XERPXP AcRpP
m Compute A = (3yc1, .,3},<_,,]T as any solution to XA = (YD L y®

]T

[m]
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CauchyEstTree: Algorithm

What's new: coefficients recovery Estimator based on Cauchy random variables

m

xP o xP) \ap y(m)

\\3 XERPXP A€eRP beRP
8

m Compute A= [3,c 1,...,3y ] as any solution to XA = (YD Y(P)]T

m MED; as the median of (/L\T:\(l)),-, NN (/L\T/~4(L’"/PJ)),-
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CauchyEstTree: Algorithm

What's new: coefficients recovery Estimator based on Cauchy random variables

m

xP o xP) \ap y(m)

\\3 XERPXP A€eRP beRP
8

m Compute A= [3,c 1,...,3y ] as any solution to XA = (YD Y(P)]T
m MED; as the median of (/L\TZ\(I)),-, NN (/L\T/~4(L’"/PJ)),-
m AT = (L7)"1[MEDy,...,MED,]"
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Cauchy-based estimators

What's new: coefficients recovery Estimator based on Cauchy random variables

Q: Why take median instead of mean?

A: The variance of a Cauchy variable is unbounded
Conclusion: O(nd,,zde™! - log(nd—1)) samples within TV distance .
Generalization to random DAGs = CauchyEst estimator.

Limitation: No guarantees when DAG is not a tree.
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4 Hardness results
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Hardness results

Hardness results

Learning Gaussian product distributions

Given samples from a n-fold Gaussian product distribution P, learning a P
such that in dpv(P, P) = O(g) with success probability 2/3 needs
Q(ne=2) samples in general.

Learning Gaussian Bayesian networks

For any 0 < £ < 1 and n, d such that d < n/2, there exists a DAG G over
[n] of in-degree d such that learning a Gaussian Bayesian network P on G
such that drv(P, P) < & with success probability 2/3 needs Q(nds—2)
samples in general.
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5 Experiments
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Experiment results

Experiments
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